Introduction The Central Dogma of Molecular Biology

Protein Synthesis

Flow of Information: DNA → RNA → Proteins Transcription Translation Transcription is the process by which a molecule of DNA is copied into a **complementary strand of RNA**.

This is called <u>messenger RNA (mRNA)</u> because it acts as a messenger between DNA and the ribosomes where <u>protein synthesis is</u> <u>carried out.</u> Protein Synthesis Transcription
Transcription process
•RNA polymerase (an enzyme) attaches to DNA at a special sequence that <u>serves as a</u> "start signal".

•The DNA strands are separated and <u>one strand</u> <u>serves as a template</u>.

•The **RNA bases** attach to the complementary DNA template, thus <u>synthesizing mRNA</u>.

Transcription process continued
The RNA polymerase recognizes a termination site on the DNA molecule and releases the new mRNA molecule.

(mRNA leaves the nucleus and travels to the **ribosome in the cytoplasm**.)

Eukaryotic Transcription

Translation is the process of decoding a mRNA molecule into a **polypeptide chain or protein.**

Each combination of 3 nucleotides on mRNA is called a <u>codon or three-letter code word.</u> Each codon specifies a <u>particular amino acid</u> that is to be placed in the polypeptide chain (protein).

A Codon

- •A three-letter code is used because there are **<u>20</u> different amino acids** that are used to make proteins.
- •If a <u>two-letter code</u> were used there would not be enough codons to select all 20 amino acids.
- •That is, there are 4 bases in RNA, so 4² (4x 4)=16; where as 4³ (4x4x4)=64.

- •Therefore, there is a total of 64 codons with mRNA, <u>61specify a particular amino acid</u>.
- This means there are **more than one codon** for each of the 20 amino acids.
- •The remaining three codons (UAA, UAG, & UGA) are <u>stop codons</u>, which signify the end of a polypeptide chain (protein).
- Besides selecting the amino acid methionine, the codon <u>AUG</u> also serves as the "<u>initiator</u>" <u>codon</u>, which starts the synthesis of a protein

1	A	G	U	C	10
Ĭ	Histidine Histidine	Arginine Arginine	Leucine	Proline Proline	U C
C	Glutamine Glutamine	Arginine Arginine	Leucine Leucine	Proline Proline	A G
U	"Stop" codon "Stop" codon Tyrosine Tyrosine	"Stop" codon Trytophan Cysteine Cysteine	Leucine Leucine Phenylalanine Phenylalanine	Serine Serine Serine Serine	AGUC
G	Glutamic acid Glutamic acid Aspartic acid Aspartic acid	Glycine Glycine Glycine Glycine	Valine Valine Valine Valine	Alanine Alanine Alanine Alanine	AGUC
A	Lysine Asparagine Asparagine	Arginine Arginine Serine Serine	Methionine Isoleucine Isoleucine	Threonine Threonine Threonine	GUC

Protein Synthesis: Translation Transfer RNA (tRNA)

- •Each tRNA molecule has <u>2 important sites</u> <u>of attachment</u>.
- •One site, called the <u>anticodon</u>, binds to the codon on the mRNA molecule.
- •The other site attaches to a **particular amino** <u>acid</u>.
- •During protein synthesis, the anticodon of a tRNA molecule **base pairs** with the appropriate mRNA codon.

Protein Synthesis: Translation Ribosome:

 Are made up of 2 subunits, a large one and a smaller one, each subunit contains <u>ribosomal</u> <u>RNA (rRNA) & proteins</u>.

•Protein synthesis starts when the <u>two subunits</u> <u>bind to mRNA</u>.

•The initiator codon AUG binds to the first anticodon of tRNA, <u>signaling the start of a</u> <u>protein.</u> Protein Synthesis: Translation Ribosome:

- •The anticodon of another tRNA binds to the next mRNA codon, bringing the **2nd amino acid** to be placed in the protein.
- •As each anticodon & codon bind together a **peptide bond forms between the two amino acids.**

Protein Synthesis: Translation Ribosome:

•The protein chain continues to grow until ribosome reaches the <u>stop codon</u>, which results in the release of the new protein and mRNA, <u>completing the process of</u> <u>translation</u>.

Protein Synthesis

